News Home

Changes in the Photovoltaics Market for Transparent Conductors

Changes in the Photovoltaics Market for Transparent Conductors


NanoMarkets' eight-year forecasts suggest that the market for transparent conductors (TCs) in both inorganic and organic thin-film photovoltaics (TFPV) applications will be about $90 million in 2012 and grow at a compound annual growth rate (CAGR) of over 30 percent to a value of over $635 million by the end of the forecast period in 2019. NanoMarkets anticipates this growth despite the current difficult overall environment for PV, in which government subsidies are under threat and in which there are huge pressures to reduce TFPV costs to make TFPV competitive with c-Si PV and with other sources of energy in general. 

The biggest change since the last NanoMarkets report on this subject is the very different economic situation surrounding PV in general. By all accounts, the PV market in 2012 is entering a period of lackluster growth, which is in stark contrast to the last several years that saw year-to-year doubling (or more) of the market, even in the midst of worldwide recession.  But now a glut of conventional crystalline silicon (c-Si) PV modules on the market after over-production by the Chinese PV panel makers, along with dropping prices, is expected to significantly slow growth rates in PV production starting in 2012 and for the next few years.


The other big change is in the political environment. Lingering fiscal concerns in important global markets in the United States and the European Union coupled with slow growth and high unemployment have led governments around the world to consider serious cost-cutting measures in an effort to reduce debt. To date, most subsidies, feed-in tariffs, and other tax incentives for PV remain in place. However, their future is uncertain; governments are likely to see these subsidies as targets for the cost-cutting axe. And the Solyndra scandal in the U.S. in 2011 didn't help matters with respect to public opinion related to government support of particular companies or technologies.

But what does all of this mean for TCs in PV applications? TCs are used principally in the thin-film and organic PV sectors rather than in the c-Si sector.  And since TFPV in general is gaining share versus c-Si PV, the market prospects for TCs in PV applications are better than they might appear at first glance. 

We believe that the pace of growth in the TFPV markets will offset declines related to decreasing government support and slow overall economic growth, but we also believe that the days of really rapid growth are over, especially in the more established TFPV sectors of thin-film silicon (TF-Si), cadmium telluride (CdTe), and copper-indium-gallium-(di)selenide (CIGS) PV.


That said, opportunities exist for TCs to create value for leading-edge PV technologies. To capitalize on these opportunities, TC suppliers need to implement active business development plans designed to make the case that costs can be reduced without sacrifices in performance.

Examples of the kinds of arguments that can be made in favor of particular TCs or TC suppliers include the following:• Indium-free transparent conducting oxides (TCOs), or the "alt-TCOs", can replace whatever expensive ITO is left in the PV sector with minimal impact to existing production methods.

Some TCOs are better suited than ITO to particular PV types based on their lower cost, commodity-scale availability, processing temperature window, or work function match to the rest of the TFPV cell. 

For example, fluorine-doped tin oxide (FTO), which is widely available in pre-coated glass sheets, is a natural fit for most rigid, superstrate PV configurations; on the other hand, aluminum-doped zinc oxide (AZO) is a good fit for substrate-configured cells that require lower temperatures for TCO deposition and a lower work function metal.


• Implementation of new target systems or new deposition processes, such as by transitioning from conventional planar targets to more efficient rotary targets wherever possible, could greatly improve utilization rates and directly affect the bottom line. 

In addition, TC (and equipment) suppliers can partner with panel makers on the optimization of existing deposition processes to maximize TC mobility, which would improve cost-per-watt values and improve the competitiveness of a particular TFPV technology for on-grid installations.

• For the most cost-sensitive and for indoor or shorter-lifetime applications, conductive polymer TCs can offer prospects for big reductions in cost, especially if high efficiency is not the most important factor for commercial success. Recent advancements in the conductivity of conductive polymer-based TCs, long a problem for these materials in the most demanding applications, make this argument more convincing.

• In the long-term, solution-processable nanomaterial-based TCs, such as those based on nanosilver, another nanoscale metallic coating, or carbon nanomaterials, make economic sense.  Solution processing can be especially attractive for new PV lines where existing vapor deposition equipment is not already entrenched, and solution processable TCs will become an even bigger factor as the relative importance of flexible PV increases over the next decade.


• Finally, anticipated growth in the "premium" building-integrated PV (BIPV) market is opening up new opportunities for TC suppliers to expand or gain entry in a subsector of the PV market that is less cost-sensitive than the market as a whole.


Home | Product | News | Job | About Us | Contact Us | transparent electrode | silver nanowires
All rights reserved:ZHEJIANG KECHUANG ADVANCED MATERIALS TECHNOLOGY Co.,LTD Tel:+86 571 58111168 Fax:+86 571 58111167 |
ADD:No. 88, Jiangling Road,Binjiang, Hangzhou, Zhejiang P.R.China Wesite:DINGYI zokoun 浙ICP备07504689号